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A B S T R A C T   

Accurate calculations of evapotranspiration (ET) are highly important for agroecosystem model simulations, and 
improvement of ET algorithms is an on-going model development goal. The objective of this study was to 
evaluate and compare six ET methods in the Decision Support System for Agrotechnology Transfer (DSSAT) 
Cropping System Model (CSM) using agronomic and weighing lysimetry data from cotton field studies at 
Bushland, Texas. Three options were tested for estimating potential ET as required by the DSSAT-CSM: 1) a 
Priestley-Taylor method, 2) a Penman-Monteith combination equation estimate of grass reference ET with a 
DSSAT-specific single crop coefficient equation, and 3) the ASCE Standardized Reference ET Equation combined 
with a dual crop coefficient method for non-stressed conditions. The latter two reference ET methods were 
adapted to provide reasonable estimates for DSSAT-required potential ET. Additionally, two methods for cal
culation of soil water evaporation were tested, including both the original and updated formulations of Ritchie 
approaches for DSSAT-CSM. The combinations of the three potential ET and two soil water evaporation ap
proaches led to six possible ET simulation options in the model. A computationally-intensive multiobjective 
optimization method was used to select among model parameterization options and ensure that modeler bias did 
not influence ET method comparisons. Among 23 agroecosystem metrics that included lysimeter-based ET, 
various cotton growth variables, and soil water content in multiple soil layers, the original Ritchie soil water 
evaporation approach performed statistically equivalent to or better than the more recent Ritchie method 
(p 0.05). The default ET method in the model, which involved Priestley-Taylor potential ET with the more 
recent Ritchie soil water evaporation method, was outperformed by other ET methods for 14 of 23 agroeco
system metrics (p 0.05). When the original Ritchie soil water evaporation method was combined with po
tential ET from the ASCE reference ET and dual crop coefficient method, the model performed statistically 
equivalent to or better than the other five ET options for all but 1 of 23 agroecosystem metrics (p 0.05). Based 
on three years of cotton data from the Bushland lysimetry fields, a DSSAT-CSM ET approach based on the 
standardized ET methodologies described by ASCE and FAO-56 combined with the original Ritchie soil water 
evaporation method provided holistic improvements to model simulations among multiple agroecosystem me
trics.   

1. Introduction 

A recent landmark effort to compare evapotranspiration (ET) si
mulations among diverse maize (Zea mays L.) models revealed twofold 
or greater variation in ET estimates for rainfed conditions in central 
Iowa (Kimball et al., 2019), which suggested that the models require 
improvements to provide consistent and accurate ET simulations. 
Among the 29 models intercompared by Kimball et al. (2019), six 
models involved different ET simulation options with the Decision 

Support System for Agrotechnology Transfer (DSSAT) Cropping System 
Model (CSM) (Jones et al., 2003). The DSSAT-CSM ET methods in
cluded six combinations of three methods for computing potential ET 
and two methods for computing soil water evaporation, as discussed 
below in detail. The results were surprising, revealing that an older soil 
water evaporation algorithm (Ritchie, 1972) outperformed the newer, 
default evaporation method in the model (Ritchie et al., 2009). Also, a 
reduced-input potential ET method based on Priestley and Taylor 
(1972) outperformed two more modern methods based on formulations 
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of the Penman-Monteith equation (Allen et al., 1998) with associated 
crop coefficient adjustments. Although the study will remain a dis
tinguished contribution toward evaluation of ET simulation methods, 
major issues impacting the simulations were that 1) no data were 
available to quantify amounts of water loss to artificial subsurface 
drainage systems (which are ubiquitous across the Iowa landscape) and 
2) only limited data were available on the status of soil water content 
profiles. Therefore, further comparisons of the six DSSAT-CSM ET 
methods are needed for other environments, where water balances are 
more fully characterized and where artificial subsurface drainage is not 
a confounding factor. 

Although the results of Kimball et al. (2019) provided great insights 
on the state of ET simulation methodologies, they noted that model 
parameterization choices made by modelers with different levels of skill 
and experience may have introduced biases in the model comparisons. 
Indeed, potential bias issues were readily apparent in the effort to ca
librate the six DSSAT-CSM ET methods for the Kimball et al. (2019) 
study, a task that was conducted solely by the lead author of the present 
article. When the goal is to make meaningful comparisons among ET 
algorithms and state definitively that one method is better than an
other, how does one make model parameterization choices while 
eliminating subjectivity and bias due to 1) personal opinions on favored 
simulation approaches, 2) failure to fully consider or even comprehend 
the appropriate parameter adjustments to be made, 3) the complexities 
introduced by interacting parameters, 4) the conflicting scenarios 
where parameter adjustments lead to improved results for one metric 
(e.g., ET) but worsened results for another metric (e.g., yield) and vice 
versa, and 5) the lack of protocols for basing model comparisons on 
statistical inference? These questions led Thorp et al. (2019) to develop 
a methodology for comparing ET simulation algorithms while reducing 
the subjectivity of parameterization choices; however, these procedures 
were only partially developed and implemented for the DSSAT-CSM 
simulations reported in the Kimball et al. (2019) study. 

Thorp et al. (2019) described a computationally-intensive metho
dology for guiding parameterization decisions and making unbiased 
comparisons of ET methods in an agroecosystem model, and the ap
proach was demonstrated by comparing three ET methods in the Cot
ton2K model. The study used agronomic and ET data from weighing 
lysimetry fields at a cotton (Gossypium hirsutum L.) field site near 
Bushland, Texas (Howell et al., 2004; Evett et al., 2012a). In the first of 
two analysis phases, a Sobol global sensitivity analysis (GSA) (Cariboni 
et al., 2007; Pianosi et al., 2016; Saltelli et al., 2000; Sobol, 2001) was 
conducted to identify influential model input parameters, understand 
model output sensitivities, and provide guidance on appropriate para
meters for adjustment. Results of the GSA guided decisions for the 
second phase of analysis, in which a multiobjective optimization ap
proach (Taboada et al., 2007) was used to make parameterization 
choices and evaluate simulation results against multiple agronomic 
measurements, while considering large numbers of input para
meterization options. Results of the simulation analysis were evaluated 
using inferential statistics to determine the ET algorithms that per
formed statistically better than others, while collectively considering 
various types of agronomic measurements. The methodology was useful 
for comparing ET methods in the Cotton2K model while minimizing, if 
not eliminating, the subjective parameterization decisions that could 
make such comparisons less meaningful. The Thorp et al. (2019) 
methodology is generally applicable for other simulation models and 
can provide further comparisons of the six ET methods in the DSSAT- 
CSM, as discussed herein. 

The overall goal of the present study was to apply the second phase 
of the Thorp et al. (2019) methodology to evaluate the performance of 
six ET methods in the DSSAT-CSM using agronomic data from cotton 
field studies at Bushland, Texas. Field data for the analysis included ET 
measurements from four weighing lysimeters at the field site and other 
agronomic measurements from co-located field experiments that com
pared fully-irrigated, deficit-irrigated, and dryland cotton production. 

Specific objectives were to use multiobjective optimization methods 
with high-performance computing to 1) evaluate the percent root mean 
squared error (%RMSE) between measured and simulated data for 23 
agroecosystem metrics in response to adjustments in 38 influential 
model input parameters (determined from a prior Sobol GSA) and 2) 
conduct statistical inference tests among %RMSE results to identify ET 
simulation options that performed significantly better than others. As 
reported in a companion paper (Thorp et al., 2020), the influential 
model input parameters were identified from the first phase of the  
Thorp et al. (2019) methodology, which involved a Sobol GSA with the 
DSSAT-CSM using data from the same field site. As compared to the  
Kimball et al. (2019) study, the present study was unique by conducting 
DSSAT-CSM ET method comparisons with 1) a different crop (cotton as 
opposed to maize), 2) a different environment (semi-arid west Texas as 
opposed to humid central Iowa), 3) more carefully controlled water 
management conditions (scheduled irrigation management as opposed 
to rainfed agriculture), 4) a different ET measurement system (weighing 
lysimetry as opposed to eddy covariance), and 5) a more comprehen
sive computational effort to minimize modeler bias. 

2. Materials and methods 

2.1. Field experiments 

Cotton field experiments to quantify evapotranspiration (ET) of 
fully-irrigated, deficit-irrigated, and dryland cotton production were 
conducted in four weighing lysimetry fields at the USDA-ARS 
Conservation and Production Research Laboratory (CPRL) near 
Bushland, Texas (35.187°N; 102.097°W; 1170 m above mean sea level) 
during the 2000 and 2001 growing seasons (Howell et al., 2004). Also, 
the Bushland Evapotranspiration and Agricultural Remote sensing EX
periment (BEAREX08) quantified ET for fully-irrigated and dryland 
cotton production at the same site during 2008 (Evett et al., 2012a). 
The soil texture at the site was predominantly clay loam and silty clay 
loam, as determined from textural analysis of soil samples (Tolk et al., 
1998). Growing season precipitation and short crop reference ET from 
April through September amounted to 153 and 1324 mm in 2000, 182 
and 1244 mm in 2001, and 333 and 1269 mm in 2008, respectively. 
Strong regional advection from the south and southwest typically led to 
relatively large reference ET values at the site, and precipitation levels 
much smaller than reference ET led to water limitation and need for 
irrigation. In all three seasons, irrigation was applied using a 10-span 
lateral-move overhead sprinkler irrigation system (Lindsay Manu
facturing, Omaha, Nebraska) equipped with mid-elevation spray ap
plication (MESA) nozzles at a height of approximately 1.5 m above the 
ground surface. The machine was oriented from north to south, traveled 
in an east or west direction, and irrigated two lysimetry fields si
multaneously. 

Four large weighing lysimeters were installed at the Bushland field 
site in the 1980’s (Marek et al., 1988) and have been used to monitor ET 
for a variety of crops for three decades (Evett et al., 2012a, 2016; 
Howell et al., 1995, 2004). Evett et al. (2012b) described the weighing 
lysimeters and their relative positions with >110 m fetch among four 
fields, which were designated using the intercardinal directions (NE, 
SE, NW, and SW) of each field location. During the 2000 and 2001 
cotton studies, the SE and NE lysimetry fields were managed using full 
and limited irrigation, respectively. Full irrigation was defined as 
weekly irrigation to replenish root zone soil water content to field ca
pacity, and limited irrigation was half of the full rate. In the 2008 
season, both the NE and SE lysimetry fields were fully irrigated. The 
NW and SW lysimetry fields were not irrigated (dryland production) in 
2001 or 2002, and less than 130 mm was applied in the 2008 early 
season to encourage germination and emergence. Soil water content 
was periodically measured (i.e., one or two weeks between measure
ments) at two access tube locations in each lysimeter using a calibrated 
neutron scattering probe (model 503DR1.5 Hydroprobe, CPN 
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International, Inc., Martinez, California), which provided data from 0.1 
to 1.9 m in 0.2 m incremental depths. Specific protocols for weighing 
lysimetry measurements during the three cotton growing seasons were 
given by Howell et al. (2004) and Evett et al. (2012a). Howell et al. 
(1995) discussed the calibration technique for mass measurement 
within the lysimeter, which can provide ET estimates at time scales less 
than one hour. More recently, Marek et al. (2014) presented techniques 
for quality assurance and quality control of data collected from the 
lysimeters. Based on this post-processing protocol, lysimeter-based ET 
data (ETC) for the present study was aggregated on a daily basis from 1 
January through 31 December in 2000, 2001, and 2008. Furthermore, 
lysimetry data from 1 January through 31 May was designated as soil 
water evaporation-dominated ET data (ETS), and lysimetry data from 1 
June through 30 September was designated as plant transpiration- 
dominated ET data (ETP). Note that ETC, ETS, and ETP all represent ET 
measurements from both crop and soil, and the only difference is the 
timeframe over which the ET data were collected and accumulated. 

Cotton planting dates ranged from mid-May to early June in the 
three growing seasons (Table 1). After establishment, cotton plants 
were destructively sampled on a two-week basis from small areas (1.0 
to 2.0 m2) more than 10 m away from the lysimeter. The samples were 
processed in the laboratory to estimate leaf area index (LAI), leaf dry 
matter (LDM), stem dry matter (SDM), boll dry matter (BDM), and 
canopy dry matter (CDM). Plants were dissected into component parts, 
placed into paper bags, and weighed after drying in a commercial oven 
at 60°C until mass stabilized (requiring 24 h or longer), indicating all 
water had been removed from the sample. Prior to drying, leaf area was 
measured using a digital scanning leaf area meter (LI-3100, LI-COR, 
Lincoln, Nebraska) and used for computation of LAI. Prior to field 
sampling, cotton canopy height (CHT) was measured in all three 
growing seasons, and canopy width (CDW) was measured in 2008 only. 
Observations of emergence date (EDAT) and anthesis date (ADAT) were 
available for a subset of the cotton plantings. Cotton harvest dates 
ranged from late October to early December in the three growing sea
sons. Yield measurements were obtained by sampling mature bolls from 
five 10.0-m2 areas in each lysimetry field. Turnout percentages were 
measured using a small research gin, which provided data for fiber and 
cottonseed yield for each lysimeter in each growing season. Seed cotton 
yield (SCY) was computed as the sum of fiber and cottonseed yield. 

2.2. DSSAT-CSM CROPGRO-Cotton 

The DSSAT-CSM CROPGRO-Cotton model (ver. 4.7.1.003) was used 
to simulate the conditions of the four lysimetry fields for the three 

cotton growing seasons at Bushland, Texas. Because the companion 
paper reports a comprehensive evaluation of model sensitivities via a 
Sobol GSA, more specific details on the formulation of crop develop
ment and growth algorithms and water and nitrogen balance compu
tations are described there (Thorp et al., 2020). Additional details about 
DSSAT-CSM CROPGRO-Cotton can be found in Jones et al. (2003) and  
Thorp et al. (2014a,b, 2017). 

The present paper focuses specifically on comparisons of six ET si
mulation options in the DSSAT-CSM, which involve the six possible 
combinations of three approaches to estimate potential ET and two 
approaches to simulate soil water evaporation (Table 2). Like many 
other agroecosystem models, calculations of potential ET form the basis 
of water use estimation in the DSSAT-CSM, and they establish the 
feedback mechanism to limit crop growth for water-stressed conditions. 
Although most applied ET scientists now explicitly use reference ET 
methods, the DSSAT-CSM was originally conceived prior to develop
ment of reference ET approaches and continues to incorporate potential 
ET concepts for ET estimation. Among the three potential ET methods, 
one method, based on Priestley and Taylor (1972), can be classified as a 
true potential ET method and is therefore appropriate for the modeling 
framework. The other two approaches adapt reference ET methods to 
provide DSSAT-required estimates of potential ET. The approaches in
volve different formulations of the Penman-Monteith equation com
bined with different crop coefficient strategies for non-stressed crop 
conditions. DeJonge et al. (2020) discussed the important differences 
between reference ET and potential ET, focusing specifically on im
plications for ET calculations in agroecosystem models. 

The very early developments of the DSSAT-CSM incorporated a  
Priestley and Taylor (1972) method for potential ET computations and 
the Ritchie (1972) method for simulating soil water evaporation (RR,  
Table 2). The combination of these methods is likely the most widely 
used ET approach in the history of the model. A second soil water 
evaporation routine was more recently added to the DSSAT-CSM 
(Suleiman and Ritchie, 2003, 2004; Ritchie et al., 2009), which simu
lates upflux of water from deeper to shallower soil layers in response to 
evaporation. The Ritchie et al. (2009) method is currently the default 
soil water evaporation algorithm in the model, while the Priestley and 
Taylor (1972) approach remains the default potential ET method (RS,  
Table 2). Traditionally, the model design requires a daily computation 
of potential ET, and simulated LAI is used to partition potential ET 
(PET) to potential soil water evaporation (PE) and potential plant 
transpiration (PT): 

=PE PET(exp[ KEP(LAI)]) (1)  

Table 1 
Summary of the 12 cotton management scenarios evaluated with DSSAT-CSM CROPGRO-Cotton. Field experiments were conducted within the four weighing 
lysimetry fields at Bushland, Texas, USA in 2000, 2001, and 2008.1          

Year Lysimetry Planting Row Plant Irrigation Rainfall2 Harvest  
Field Date (DOY) Spacing Density Depth Depth Date (DOY)     

(cm) (p m−2) (mm) (mm)  
2000 NE 16 May (137) 76 17.6 292 249 6 Dec (341) 
2000 NW 15 May (136) 76 11.1 0 249 6 Dec (341) 
2000 SE 16 May (137) 76 18.6 534 249 6 Dec (341) 
2000 SW 15 May (136) 25 8.8 0 249 6 Dec (341)         

2001 NE 16 May (136) 76 14.9 213 368 3 Nov (307) 
2001 NW 16 May (136) 76 12.3 0 368 20 Oct (293) 
2001 SE 16 May (136) 76 15.3 403 368 16 Nov (320) 
2001 SW 16 May (136) 38 7.1 0 368 20 Oct (293)         

2008 NE 21 May (142) 76 12.6 409 362 24 Nov (329) 
2008 NW 5 Jun (157) 76 10.1 129 362 29 Nov (334) 
2008 SE 21 May (142) 76 11.5 410 362 25 Nov (330) 
2008 SW 5 Jun (157) 76 13.5 129 362 24 Nov (329) 

1 day of year, DOY; northeast, NE; northwest, NW; southeast, SE; southwest, SW. 
2 1 January to 30 September.  
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=PT PET PE (2) 

where KEP is an input parameter named the energy extinction coeffi
cient and has a default value of 0.7. Subsequently, the model de
termines whether soil water content and plant root growth is sufficient 
to supply PE and PT. The sufficiency of soil water content to supply PE 
is determined by either the Ritchie (1972) or the Ritchie et al. (2009) 
algorithm, and actual soil water evaporation is the minimum of PE and 
the amount determined by the evaporation algorithm. Likewise, the 
sufficiency of the simulated root system and soil water content to 
supply PT is determined by a root water uptake algorithm, and actual 
plant transpiration is the minimum of PT and the amount determined 
by the uptake calculations. Finally, plant stress coefficients are com
puted from the ratio of simulated values for actual and potential tran
spiration. These stress coefficients feedback on the crop simulation to 
limit calculations of photosynthesis and crop growth. 

Since DSSAT version 4.0, a reference ET method based on the 
Penman-Monteith combination equation has been available to estimate 
the DSSAT-required potential ET (F, Table 2). The method was devel
oped following Eqs. (3)–(5) in the Food and Agriculture Organization of 
the United Nations (FAO) Irrigation and Drainage Paper No. 56 (FAO- 
56) (Allen et al., 1998). Several formulations of this method were 
previously evaluated by Sau et al. (2004), but only one approach was 
released with DSSAT. This method assumes a constant reference crop 
height of 0.12 m, surface resistance of 70 s m−1, LAI of 2.88 m m−2, 
and surface albedo of 0.23 in the Penman-Monteith combination 
equation (Eq. 3 as presented on page 19 in FAO-56), giving approxi
mately “grass” reference ET (ETpm). The method uses the following 
equations to adjust reference ET to potential ET: 

= +K 1.0 (EORATIO 1.0) LAI
6.0c (3)  

=PET K (ET )c pm (4) 

where EORATIO is an input parameter similar to a maximum FAO-56 
crop coefficient. However, Eq. 3 is specific to DSSAT and does not ap
pear in FAO-56 or any related primary ET reference. Also, the EORATIO 
parameter is hard-coded to 1.0 for many crops in the DSSAT-CSM (e.g., 
maize), leading to Kc equal to 1.0 (Eq. 3). Currently, only the CROPGRO 
models (e.g., soybean, cotton, peanut, and dry bean) fully implement 
the EORATIO method. This means the DSSAT-CSM incorrectly simu
lates potential ET as reference ET for crops like maize (DeJonge et al., 
2020), although Eq. 3 is fully implemented for the CROPGRO-Cotton 

model tested herein. DeJonge et al. (2020) discussed how reference ET 
and potential ET are fundamentally different and stressed that reference 
ET computations must be paired with appropriate FAO-56 crop coeffi
cients to adjust daily ET estimates from the reference surface to the crop 
surface. Although the Penman-Monteith formulation in DSSAT-CSM has 
been known both colloquially and in literature as DSSAT’s “FAO-56” 
method, the approach deviates substantially from FAO-56 as described 
by Allen et al. (1998) and has therefore misled some model users 
(DeJonge et al., 2020). 

While these issues motivated several efforts to make the approach 
more similar to FAO-56 (Thorp et al., 2010; DeJonge et al., 2012; Thorp 
et al., 2014b), the efforts of DeJonge and Thorp (2017) provided a 
DSSAT-CSM ET method that most closely followed current standardized 
ET methods, as embodied in the American Society of Civil Engineers 
(ASCE) Standardized Reference Evapotranspiration Equation (Walter 
et al., 2005) and FAO-56 (Allen et al., 1998). They added a separate 
reference ET method to estimate DSSAT-required potential ET (G,  
Table 2), which used the FAO Penman-Monteith equation (Eq. 6 as 
presented on page 24 in FAO-56) to compute either short crop reference 
ET (ETo) or tall crop reference ET (ETr), following the algorithms spe
cified in the ASCE Standardized Reference Evapotranspiration Equation 
documentation (Walter et al., 2005). Furthermore, DeJonge and Thorp 
(2017) implemented the FAO-56 dual crop coefficient method with 
basal crop coefficients (Kcb) computed from DSSAT-simulated LAI and 
paired with ETo to compute PT: 

= +K K (K K )(1.0 exp[ SK (LAI)])cb cbmin cbmax cbmin c (5)  

=PT K ETcb o (6) 

where Kcbmin and Kcbmax are specified from FAO-56 crop coefficient 
tables. The evaporation coefficient (Ke) is computed following Eq. 71 in 
FAO-56, with the stress coefficient (Kr) set to 1.0 to derive non-stressed 
evaporation potential: 

=PE K ETe o (7) 

Due to differences in the DSSAT-CSM and FAO-56 soil profile defini
tions, FAO-56 concepts are used only to define the evaporation poten
tial (PE), while the DSSAT algorithms of Ritchie (1972) or Ritchie et al. 
(2009) are used for computation of actual soil water evaporation. 

The DeJonge and Thorp (2017) ET formulation closely adapts 
standardized ET methods as described in Allen et al. (1998) and Walter 
et al. (2005) for computation of PT and PE in the DSSAT-CSM. As 

Table 2 
Summary of six evapotranspiration (ET) options in the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model (CSM). The six ET 
approaches involve the combinations of three methods to estimate potential ET and two soil water evaporation methods, which are specified by changing settings for 
the “EVAPO” and “MESEV” parameters, respectively, in the DSSAT-CSM management file.      

Short EVAPO MESEV Description 
Name Setting Setting   

RR R R Potential ET is computed via a Priestley and Taylor (1972) method, requiring only daily solar irradiance and maximum and minimum air 
temperatures. Soil water evaporation is computed using the Ritchie (1972) method. These represent the earliest methods in the model, which have 
been used most widely.     

FR F R “Grass” reference ET is computed using the Penman-Monteith combination equation based on Eqs. (3)–(5) in FAO-56 (Allen et al., 1998) using fixed 
constants for the “grass” reference surface. Potential ET for cotton is computed by adjusting the reference ET using a DSSAT-specific single crop 
coefficient as a function of leaf area index. The method requires daily solar irradiance, wind speed, and maximum, minimum, and dew point air 
temperatures. Partitioning of potential ET to soil and plant surfaces is based on an exponential function of leaf area index. Soil water evaporation is 
computed using the Ritchie (1972) method. 

GR G R Standardized short crop reference ET (ETos) is computed using the FAO Penman-Monteith equation based on Eq. 6 in FAO-56 (Allen et al., 1998) and 
explicitly following the American Society of Civil Engineers (ASCE) Standardized Reference Evapotranspiration Equation (Walter et al., 2005). 
Following DeJonge and Thorp (2017), potential T is computed by adjusting ETos using an FAO-56 basal crop coefficient (Kcb) calculated from leaf area 
index, and potential E is computed based on ETos and an FAO-56-based evaporation coefficient. The method requires daily solar irradiance, wind 
speed, and maximum, minimum, and dew point air temperatures. Soil water evaporation is computed using the Ritchie (1972) method. 

RS R S Potential ET is computed identically to the RR method above. Soil water evaporation is computed using the Ritchie et al. (2009) method. These 
represent the current default methods in the model. 

FS F S Potential ET is computed identically to the FR method above. Soil water evaporation is computed using the Ritchie et al. (2009) method. 
GS G S Potential E and potential T are computed identically to the GR method above. Soil water evaporation is computed using the Ritchie et al. (2009) 

method. 
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shown by DeJonge and Thorp (2017), the method also provided si
mulated ET time series that demonstrated expected ET behavior, while 
the behavior of other DSSAT-CSM ET methods deviated from theore
tical expectations. Because DeJonge and Thorp (2017) did not evaluate 
or compare the performance of the various DSSAT ET methods against 
measured ET data, the present study provides further performance as
sessments and comparisons using the three-year cotton data set from 
the Bushland weighing lysimetry fields. Hereafter, the six ET methods 
in DSSAT-CSM are denoted RR, FR, GR, RS, FS, and GS, as described in  
Table 2. 

2.3. Simulation workflow 

The simulation workflow for the present study included 1) a Sobol 
sampling scheme to select large numbers (i.e., over 15 million) of input 
parameterization options from a high-dimensional parameter space, 2) 
high-performance computing to efficiently conduct DSSAT-CSM 
CROPGRO-Cotton simulations, 3) a database approach to link input 
parameter sets with %RMSE values computed from measured and si
mulated data for multiple agroecosystem metrics, 4) a multiobjective 
optimization approach to identify optimal parameterization options 
that minimize %RMSE among the metrics, and 5) inferential statistics to 
compare performance of six ET methods in the model (Fig. 1). Further 
details of the workflow implementation are described in the following 
sections. 

2.4. Sobol sampling 

As reported in the companion paper (Thorp et al., 2020), a Python 
(www.python.org) script that incorporated the Sensitivity Analysis Li
brary (SALib) was used to conduct Sobol sampling for a Sobol GSA. In 
the present study, the same SALib algorithm was used for Sobol sam
pling; however, the sampled parameter space was modified based on 
the results of the previous GSA. Only the influential parameters were 
included in the present analysis. This ensured that parameter adjust
ments would have meaningful impact on the model output and there
fore lead the analysis toward improved model fit to measured data. 
Parameters that were deemed non-influential from the previous GSA 
were fixed, either to default values or based on past experience with the 
model. The GSA was not repeated for the new Sobol sample. Instead, a 
subset of the Sobol samples was chosen via multiobjective optimization 
to identify optimal model parameterizations. 

For the previous GSA (Thorp et al., 2020), a first-order sensitivity 
index threshold of 0.05 was used to identify the influential parameters. 
As a result, several parameters were influential for only a few but not all 
of the six ET methods (see Table 2 in the companion paper). For the 
present study, the data were assessed with a slightly reduced sensitivity 
index threshold of 0.031, which permitted consistent influential para
meters among all six ET methods for all but two parameters: the top- 
layer root growth factor (SRGF1) and the maximum basal crop coeffi
cient (KMAX). Both of these parameters remained consistently influ
ential for the Ritchie (1972) evaporation method (R, Table 2) but not 
influential for the Ritchie et al. (2009) method (S, Table 2). The mod
ified sensitivity index threshold permitted more consistent parameter 
adjustments among ET methods, which was expected to encourage a 
fairer performance comparison among ET methods. It is a conservative 
adjustment, allowing flexibility for a few parameters that would 
otherwise be fixed, all in the interest of greater fairness among ET 
method comparisons. 

Only 12 of 38 influential model input parameters were crop cultivar 
parameters (Table 3). Six of these parameters controlled photothermal 
durations for cotton growth stages, including photothermal time from 
planting to emergence (PL-EM), from emergence to flowering (EM-FL), 
from flowering to first boll (FL-SH), from flowering to first seed (FL-SD), 
from first seed to maturity (SD-PM), and for maximum boll load 
(PODUR). Three parameters controlled leaf growth, including 

maximum photosynthesis rate (LFMAX), the specific leaf area for 
standard conditions (SLAVR), and the leaf appearance rate (TRIFL). The 
remaining three parameters controlled the maximum daily growth 
fraction partitioned to bolls (XFRT) and the relative cultivar width 
(RWDTH) and height (RHGHT). Their ranges of flexibility were speci
fied identically to that in the companion study, based on experience 
with the model and examples from model input files (Table 3). 

The previous GSA (Thorp et al., 2020) identified increased model 
sensitivity to parameters defining the soil profile water limits, including 

Fig. 1. Workflow for the “Phase 2” analysis to compare evapotranspiration 
methods in the DSSAT Cropping System Model (CSM), including 1) a Sobol 
method for sampling 38 input parameters for DSSAT-CSM CROPGRO-Cotton, 2) 
model simulations on the Ceres high performance computer (HPC), 3) a data
base approach to link model input parameters from Sobol sampling to 23 
percent root mean squared error (%RMSE) computations between measured 
and simulated data for 23 agroecosystem metrics, 4) a multiobjective optimi
zation approach to identify parameterization options that minimize %RMSE 
among the 23 metrics, and 5) inferential statistics to compare performance of 
six ET simulation methodologies among the 23 metrics. This “Phase 2” simu
lation analysis was informed by the “Phase 1” analysis, as reported in a com
panion paper (Thorp et al., 2020). 
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the lower limit (SLLL) and drained upper limit (SDUL). The SLLL and 
SDUL values for each of 10 soil layers were adjusted individually in the 
present study, because soil water content data were available for all soil 
layers. This was different from the previous GSA, in which the SLLL and 
SDUL data were specified identically among all the layers, because the 
goal was simply to identify influential parameters rather than optimize 
SLLL and SDUL uniquely among soil layers. The default layer depths for 
soil profiles in DSSAT-CSM were used: 0–5 cm, 5–15 cm, 15–30 cm, 
30–45 cm, 45–60 cm, 60–90 cm, 90–120 cm, 120–150 cm, 150–180 cm, 
and 180–210 cm. The upper and lower bounds for SLLL and SDUL were 
based on soil texture measurements by Tolk et al. (1998) for the 
Pullman soil at the Bushland field site. The Rosetta pedotransfer func
tions (Zhang and Schaap, 2017) provided mean Van Genuchten (1980) 
parameters for the Bushland soil texture data and also provided stan
dard deviation as a measure of parameter uncertainty. The ranges of 
SLLL and SDUL were calculated based on ranges of plus and minus two 
standard deviations from the mean Van Genuchten (1980) parameters 
for the Pullman soil (Table 3). Suction pressures of 1500 and 33 kPa 
were assumed for SLLL and SDUL, respectively, in the Van Genuchten 
(1980) model. 

The GSA also identified the initial soil water content (SH2O) as a 
highly influential parameter (Thorp et al., 2020). Measured soil water 
content data were available only after the start of the growing season. 
Therefore, the data could not be used to directly specify the initial soil 
water contents for model simulations, which were initialized on 1 
January because lysimeter-based ET measurements were available 
then. The following strategy was adopted to adjust initial soil water 
contents uniquely for each lysimeter in each growing season. First, to 
establish the general shape of the soil water content profile, the average 
seasonal soil water content in each soil layer was computed from 
measured data for each lysimeter and growing season. Next, a single 
parameter was used to initialize the model by adjusting all the soil 
water contents in the soil profile between ±0.09 cm3 cm−3 relative to 
the average seasonal soil water content in each layer (Table 3). The 
parameter range was chosen to ensure that the model would not be 
initialized with a soil water content value greater than porosity. In this 
way, the initial soil water content parameters, which were deemed 
highly influential in the previous GSA, were allowed flexibility while 
the optimization algorithm, discussed later, ensured that in-season si
mulated soil water content measurements were fit to measured data. 

Table 3 
The DSSAT-CSM CROPGRO-Cotton parameters sampled for multiobjective optimization with their lower bounds (LB) and upper bounds (UB).      

Parameter Description LB UB  

EM-FL Photothermal time - emergence to flowering (°C d) 30.0 50.0 
FL-SH Photothermal time - flowering to first boll (°C d) 1.0 15.0 
FL-SD Photothermal time - flowering to first seed (°C d) 1.0 20.0 
SD-PM Photothermal time - first seed to maturity (°C d) 25.0 55.0 
LFMAX Maximum photosynthesis rate (mg CO2 m−2 s−1) 0.9 3.0 
SLAVR Specific leaf area for standard conditions (cm2 g−1) 110.0 190.0 
XFRT Maximum daily growth fraction partitioned to bolls (%) 0.3 1.0 
PODUR Photothermal time to maximum boll load (°C d) 5.0 20.0 
PL-EM Photothermal time - planting to emergence (°C d) 2.0 12.0 
TRIFL Leaf appearance rate (# °C−1 d−1) 0.1 0.4 
RWDTH Width of cultivar relative to standard cultivar 0.7 1.30 
RHGHT Height of cultivar relative to standard cultivar 0.7 1.30 
KMAX Maximum basal crop coefficient (unitless) 0.9 1.3 
SLU1 Evaporation limit for Ritchie (1972) method (cm) 4.0 20.0 
SLDR Soil drainage rate (fraction d−1) 0.05 0.6 
SLLL005 Lower limit from 0 to 5 cm (cm3 cm−3) 0.114 0.222 
SLLL015 Lower limit from 5 to 15 cm (cm3 cm−3) 0.114 0.222 
SLLL030 Lower limit from 15 to 30 cm (cm3 cm−3) 0.125 0.240 
SLLL045 Lower limit from 30 to 45 cm (cm3 cm−3) 0.127 0.245 
SLLL060 Lower limit from 45 to 60 cm (cm3 cm−3) 0.126 0.243 
SLLL090 Lower limit from 60 to 90 cm (cm3 cm−3) 0.126 0.241 
SLLL120 Lower limit from 90 to 120 cm (cm3 cm−3) 0.126 0.241 
SLLL150 Lower limit from 120 to 150 cm (cm3 cm−3) 0.130 0.249 
SLLL180 Lower limit from 150 to 180 cm (cm3 cm−3) 0.134 0.261 
SLLL210 Lower limit from 180 to 210 cm (cm3 cm−3) 0.132 0.250 
SDUL005 Drained upper limit from 0 to 5 cm (cm3 cm−3) 0.285 0.397 
SDUL015 Drained upper limit from 5 to 15 cm (cm3 cm−3) 0.286 0.397 
SDUL030 Drained upper limit from 15 to 30 cm (cm3 cm−3) 0.284 0.396 
SDUL045 Drained upper limit from 30 to 45 cm (cm3 cm−3) 0.282 0.395 
SDUL060 Drained upper limit from 45 to 60 cm (cm3 cm−3) 0.270 0.383 
SDUL090 Drained upper limit from 60 to 90 cm (cm3 cm−3) 0.274 0.383 
SDUL120 Drained upper limit from 90 to 120 cm (cm3 cm−3) 0.266 0.373 
SDUL150 Drained upper limit from 120 to 150 cm (cm3 cm−3) 0.273 0.385 
SDUL180 Drained upper limit from 150 to 180 cm (cm3 cm−3) 0.284 0.409 
SDUL210 Drained upper limit from 180 to 210 cm (cm3 cm−3) 0.284 0.402 
SRGF1 Root growth factor in top soil layer (fraction) 0.3 1.0 
SRGF2 Root growth factor decline with soil depth (fraction m−1) 0.2 0.8 
SH2ONE00 Initial soil water content adjustment for NELYS in 2000 (cm3 cm−3) −0.09 0.09 
SH2OSE00 Initial soil water content adjustment for SELYS in 2000 (cm3 cm−3) −0.09 0.09 
SH2ONW00 Initial soil water content adjustment for NWLYS in 2000 (cm3 cm−3) −0.09 0.09 
SH2OSW00 Initial soil water content adjustment for SWLYS in 2000 (cm3 cm−3) −0.09 0.09 
SH2ONE01 Initial soil water content adjustment for NELYS in 2001 (cm3 cm−3) −0.09 0.09 
SH2OSE01 Initial soil water content adjustment for SELYS in 2001 (cm3 cm−3) −0.09 0.09 
SH2ONW01 Initial soil water content adjustment for NWLYS in 2001 (cm3 cm−3) −0.09 0.09 
SH2OSW01 Initial soil water content adjustment for SWLYS in 2001 (cm3 cm−3) −0.09 0.09 
SH2ONE08 Initial soil water content adjustment for NELYS in 2008 (cm3 cm−3) −0.09 0.09 
SH2OSE08 Initial soil water content adjustment for SELYS in 2008 (cm3 cm−3) −0.09 0.09 
SH2ONW08 Initial soil water content adjustment for NWLYS in 2008 (cm3 cm−3) −0.09 0.09 
SH2OSW08 Initial soil water content adjustment for SWLYS in 2008 (cm3 cm−3) −0.09 0.09 
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Five additional water balance parameters were adjusted, including 
two soil root growth factors (SRGF1 and SRGF2), the soil drainage rate 
(SLDR), the evaporation limit (SLU1) which was applicable only for the  
Ritchie (1972) evaporation approach (R, Table 2), and the maximum 
basal crop coefficient (KMAX) which was influential only for the  
DeJonge and Thorp (2017) potential ET method with Ritchie (1972) 
soil water evaporation (GR, Table 2). The root growth factors define the 
shape of the rooting profile and were calculated using two variables: 1) 
SRGF1 specified the root growth factor for the top soil layer and 2) 
SRGF2 specified the linear rate of decline with soil profile depth. Si
milar to the companion study, root growth profiles were specified using 
a linear decrease from the top soil layer with zero being the smallest 
possible factor level. Because SRGF1 was non-influential for the Ritchie 
et al. (2009) evaporation method (Thorp et al., 2020), it was fixed to 
1.0 for that case, indicating unrestricted root growth in that layer. 
Other non-influential soil parameters were fixed based on field mea
surements or experience with the model. 

The N parameter of SALib’s Sobol sampling algorithm was set to 
158,224 with specification to prepare for calculation of second-order 
sensitivity effects (although the resulting parameter sets were not used 
for a second GSA). Thus, the number of n-dimensional parameter sets 
( =n 49) chosen was + =N n(2 2) 15, 822, 400, as defined within the 
Sobol algorithm. The value of N was identical to that used in the 
companion study based on estimated timeframes for conducting simu
lations via high-performance computing. The total number of para
meters for each lysimeter and growing season combination was 38; 
however, because initial soil water conditions were permitted to vary 
uniquely per lysimeter and growing season (as discussed above), the n 
for the Sobol algorithm was 49. 

2.5. Simulations 

Similar to the companion study, DSSAT-CSM CROPGRO-Cotton was 
set up to run 12 simulation scenarios based on the three cotton growing 
seasons and four uniquely-managed lysimetry fields (Table 1). Simu
lations were initiated on 1 January in each year and concluded on the 
recorded harvest date for each lysimetry field. Within the SW lysimetry 
field in 2001, twin rows spaced 25 cm apart were planted on 76 cm 
centers. Because CROPGRO-Cotton did not consider this planting 

configuration, a row spacing of 38 cm (i.e., half of 76 cm) was simu
lated. 

Simulations were conducted using USDA’s high-performance com
puting resource called Ceres. A Python script that incorporated the 
“multiprocessing” package was used to manage simulation tasks among 
processing cores. With 12 simulation scenarios, 6 ET algorithms, and 
15,822,400 parameter sets, the simulation analysis required a total of 
1,139,212,800 simulations, which required 327,875 CPU hr on Ceres 
and approximately 1,639 h of wall-clock time. This study was more 
computationally expensive than the companion study, which was in 
part related to the greater number of simulations required. Additional 
details regarding the simulation set up are presented in the companion 
paper (Thorp et al., 2020). 

2.6. Database method 

Field experiments at Bushland provided data for 23 agroecosystem 
metrics (Table 4), including ET from weighing lysimeters, soil water 
content from neutron scattering probes, and crop development and 
growth information. Measured and simulated data for these metrics 
were aggregated among the three cotton growing seasons for each 
tested parameter set by calculating the percent root mean squared error 
(%RMSE) uniquely for each metric: 

= =
=

f
n

m sm s
m

%RMSE ( , ) 100
¯

1 ( )i i i i
i i j

n

ij ij
1

2
i

(8) 

where m s,i i, and ni are the measured and simulated data vectors and 
vector length, respectively, among the three cotton growing seasons for 
the ith metric (Table 4). The %RMSE statistics were calculated uniquely 
for each lysimeter to permit separate evaluation of irrigated versus 
dryland cotton production conditions. The simulation jobs on Ceres 
concluded by outputting a separate model response database for each 
lysimetry field, which included the DSSAT-CSM CROPGRO-Cotton 
input parameter sets with associated %RMSE statistics for each of the 
23 agroecosystem metrics. 

Table 4 
Agroecosystem metrics evaluated for three cotton growing seasons among four lysimetry fields (NELYS, SELYS, NWLYS, and SWLYS) at Bushland, Texas, USA. The 23 
metrics are listed in priority order for evaluation of the DSSAT-CSM CROPGRO-Cotton agroecosystem model using multiobjective optimization techniques.         

Metric Description Unit NELYS SELYS NWLYS SWLYS    
n n n n  

ETC Evapotranspiration mm d−1 940 967 927 927 
SCY Seed cotton yield kg ha−1 3 3 3 3 
LAI Leaf area index m2 m−2 19 19 17 17 
CHT Canopy height m 19 19 17 17 
EDAT Emergence Date day of year 3 3 1 1 
ADAT Anthesis Date day of year 1 1 1 1 
CDM Canopy dry matter kg ha−1 19 19 17 17 
LDM Leaf dry matter kg ha−1 19 19 17 17 
SDM Stem dry matter kg ha−1 12 12 10 10 
BDM Boll dry matter kg ha−1 12 12 10 10 
CWD Canopy width m 9 9 6 6 
ETP ETC from 1 Jan to 31 May mm d−1 357 360 359 356 
ETS ETC from 1 Jun to 30 Sep mm d−1 429 436 425 432 
SWC010 Soil water content at 10 cm cm3 cm−3 30 29 24 24 
SWC030 Soil water content at 30 cm cm3 cm−3 30 29 24 24 
SWC050 Soil water content at 50 cm cm3 cm−3 30 29 24 24 
SWC070 Soil water content at 70 cm cm3 cm−3 30 29 24 24 
SWC090 Soil water content at 90 cm cm3 cm−3 30 29 24 24 
SWC110 Soil water content at 110 cm cm3 cm−3 30 29 24 24 
SWC130 Soil water content at 130 cm cm3 cm−3 30 29 24 24 
SWC150 Soil water content at 150 cm cm3 cm−3 30 29 24 24 
SWC170 Soil water content at 170 cm cm3 cm−3 30 29 24 24 
SWC190 Soil water content at 190 cm cm3 cm−3 30 27 23 18 
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2.7. Multiobjective optimization 

Because there were 23 agroecosystem metrics to consider (Table 4), 
identifying the best parameterization options for DSSAT-CSM 
CROPGRO-Cotton required multiobjective optimization (MOO) techni
ques (Taboada et al., 2007). The objective function to be optimized 
incorporated k unique %RMSE calculations, one for each agroecosystem 
metric ( =k 23), expressed as 

= …f f f fm s m s m s m s( , ) ( ( , ), ( , ), , ( , ))k k kMOO 1 1 1 2 2 2 (9) 

where the terms are as described for Eq. 8. Eq. 9 represents the set of % 
RMSE calculations (Eq. 8) for each of k agroecosystem metrics, based on 
the results of simulations for a given parameter set among nearly 16 
million sets tested. The first step toward reduction of plausible para
meter sets was to calculate the subset of Pareto optimal solutions 
(Cheikh et al., 2010), which were the solutions that were not dominated 
(or non-dominated) by any other solution. In mathematical terms, a 
solution x1 dominates another solution x2 if the following two conditions 
are met:  

• f x f x( ) ( )i i1 2 for all …i k{1, 2, , }
• <f x f x( ) ( )j j1 2 for at least one …j k{1, 2, , }

In words, a solution dominates another if the %RMSE calculations 
for k agroecosystem metrics are all less than or equal to that for the 
other solution, and at least one %RMSE calculation is less than that for 
the other solution. The goal was to find the parameter sets with %RMSE 
calculations that were not dominated by the RMSE calculations for any 
other parameter set. Following the methodology of Thorp et al. (2019), 
a Python script was developed to calculate the Pareto optimal solution 
set among the evaluated parameterization options for each DSSAT-CSM 
ET method and lysimetry field. 

A known problem with Pareto optimal sets is that they often remain 
large and cumbersome, and they do not adequately ease the burden of 
selecting one or several practical solutions. Following Taboada et al. 
(2007) and as implemented by Thorp et al. (2019), a “pruning” algo
rithm was developed to reevaluate each Pareto optimal solution and 
combine the k objective function outcomes (Eq. 9) to a single evalua
tion criterion by assigning k weightings following a predetermined 
objective function priority. Because ET and crop yield were the most 

Table 5 
Analysis of variance results (F statistics and p values) and Tukey’s multiple comparisons tests among the 
pruned Pareto optimal solutions from DSSAT-CSM CROPGRO-Cotton simulations using three potential 
evapotranspiration methodologies (R, F, and G). The group means for percent root mean squared errors (% 
RMSE) are given for each method and agroecosystem metric, and statistically better performing methods for 
each metric are highlighted in bold with gray background. 1   

1anthesis date, ADAT; boll dry matter, BDM; canopy dry matter, CDM; canopy height, CHT; canopy width, 
CWD; emergence date, EDAT; evapotranspiration (1 Jan to harvest), ETC; evapotranspiration (1 Jun to 30 
Sep), ETP; evapotranspiration (1 Jan to 31 May), ETS; leaf area index, LAI; leaf dry matter, LDM; seed cotton 
yield, SCY; stem dry matter, SDM; soil water content; SWC.  
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important of agroecosystem metrics in this study, the priority of ob
jective functions were specified in the following order: ETC, SCY, LAI, 
CHT, EDAT, ADAT, CDM, LDM, SDM, BDM, CWD, ETP, and ETS, fol
lowed by the ten soil water content measurements from top to bottom 
in the profile (Table 4). The weightings were used to calculate the 
weighted average among the groups of 23 %RMSE results among all 
solutions in the Pareto optimal set, and the parameter set with the 
smallest weighted average was identified. The process was iterated 
until 1,000 iterations passed without identification of a new pruned 
solution. The set of pruned Pareto optimal solutions determined from 
this process was used for all further analysis. For model evaluation 
purposes, simulated data were estimated based on the median simula
tion result among the pruned Pareto optimal solutions. Additional de
tails on the multiobjective optimization strategy are presented by Thorp 
et al. (2019). 

2.8. ET method comparison 

The performance of the six DSSAT-CSM ET methods (Table 2) was 
compared by conducting an analysis of variance (ANOVA) on %RMSE 
results for each of the 23 agroecosystem metrics (Table 4) among the 
pruned Pareto optimal solutions. Tukey’s multiple comparisons tests 
were also conducted to identify which ET methods resulted in statisti
cally different %RMSE values for each agroecosystem metric (p 0.05), 
and the smallest of these identified the better ET method for a given 
metric. Statistical analysis was conducted using the R Project for Sta
tistical Computing software (www.r-project.org). 

3. Results 

3.1. Inferential statistics 

Among the three methods for simulating potential ET, the DeJonge 

Table 6 
Analysis of variance results (F statistics and p values) and Tukey’s multiple comparisons tests 
among the pruned Pareto optimal solutions from DSSAT-CSM CROPGRO-Cotton simulations 
using two soil water evaporation methodologies (R and S). The group means for percent root 
mean squared errors (%RMSE) are given for each method and agroecosystem metric, and sta
tistically better performing methods for each metric are highlighted in bold with gray back
ground. 1   

1 anthesis date, ADAT; boll dry matter, BDM; canopy dry matter, CDM; canopy height, CHT; 
canopy width, CWD; emergence date, EDAT; evapotranspiration (1 Jan to harvest), ETC; eva
potranspiration (1 Jun to 30 Sep), ETP; evapotranspiration (1 Jan to 31 May), ETS; leaf area 
index, LAI; leaf dry matter, LDM; seed cotton yield, SCY; stem dry matter, SDM; soil water 
content; SWC  
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and Thorp (2017) approach (G, Table 2) performed either statistically 
better than or similarly to the other two potential ET methods for all but 
two of the agroecosystem metrics (Table 5). Only for emergence date 
(EDAT) and soil water evaporation from 1 January through 31 May 
(ETS) did the Priestley-Taylor approach (R, Table 2) and Penman- 
Monteith combination equation approach (F, Table 2) perform statis
tically better than the DeJonge and Thorp (2017) implementation of the 
ASCE Standardized Reference ET equation with FAO-56 dual crop 
coefficients. Likewise, with the exception of anthesis date (ADAT), the F 
method performed statistically better than or similarly to the R method 
among all metrics. Regarding differences for EDAT and ADAT, the mean 
%RMSE differences among metrics were not more than 0.1% and 0.4%, 
respectively. Thus, although the results were significantly different for 
EDAT and ADAT, the magnitudes of the error differences did not in
dicate large performance differences. Specifically, EDAT and ADAT 
were not simulated more than ±2 and ±6 days different from available 
observations for 95% of simulations among pruned Pareto optimal so
lutions. As compared to the G potential ET method, the F and R 
methods provided statistically worse simulations for several of the 
plant-based metrics, including LAI and SDM, while the R method ad
ditionally simulated CHT, CDM, LDM, ETC, ETP and soil water contents 
from the surface to 90 cm with statistically greater error. The results 
demonstrated model performance advantages when using the DeJonge 
and Thorp (2017) approach for potential ET simulations in the DSSAT- 
CSM. 

The poorer performance of the DeJonge and Thorp (2017) approach 
for ETS (Table 5) may not be of great concern. First, ETS was a lower 
priority metric. All other ET and plant growth metrics were specified 
with greater priority in the multiobjective optimization, and only the 
soil water content metrics were specified with lower priority (Table 4). 
Second, ETS was specified as ET from 1 January through 31 May, 
mostly a fallow period prior to crop planting and emergence (Table 1) 
with secondary importance to ET during the crop growing season. 
Furthermore, the total amount of ET for ETS (i.e., 145–179 mm) was 
2–3 times less than the amount of ET for ETP (i.e., 331–723 mm). The 
ET for ETP is much more relevant for water use during the cotton 
growing season, although ETS was included in the analysis due to 
availability of ET measurements during that time. Finally, as discussed 
further later, poorer ETS performance was attributed to the combina
tion of the G potential ET method with the Ritchie et al. (2009) soil 
water evaporation method (GS, Table 2), while the combination of G 
potential ET with the Ritchie (1972) soil water evaporation method 
(GR, Table 2) performed similarly to other ET options. 

With the Ritchie (1972) soil water evaporation methodology, si
mulations of all 23 agroecosystem metrics were statistically equivalent 
to or better than that for the Ritchie et al. (2009) method (Table 6). The 
results clearly showed that simulations of ETC, ETS, and soil water 
contents at 5 of 10 soil profile depths were statistically better with the  
Ritchie (1972) method, and none of the metrics were better simulated 
with the Ritchie et al. (2009) method. The result corroborated findings 

Table 7 
Analysis of variance results (F statistics and p values) and Tukey’s multiple comparisons tests among the pruned Pareto optimal solutions from DSSAT- 
CSM CROPGRO-Cotton simulations using six combinations of three potential evapotranspiration methods two soil water evaporation methods (RR, FR, 
GR, RS, FS, and GS). The group means for percent root mean squared errors (%RMSE) are given for each method and agroecosystem metric, and 
statistically better performing methods for each metric are highlighted in bold with gray background.1   

1 anthesis date, ADAT; boll dry matter, BDM; canopy dry matter, CDM; canopy height, CHT; canopy width, CWD; emergence date, EDAT; evapo
transpiration (1 Jan to harvest), ETC; evapotranspiration (1 Jun to 30 Sep), ETP; evapotranspiration (1 Jan to 31 May), ETS; leaf area index, LAI; leaf dry 
matter, LDM; seed cotton yield, SCY; stem dry matter, SDM; soil water content; SWC  
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reported by Kimball et al. (2019), suggesting that the Ritchie et al. 
(2009) soil water evaporation method requires further development 
prior to regular use in the DSSAT-CSM. 

By assessing the six combinations of potential ET and soil water 
evaporation options in the DSSAT-CSM, the results showed that the 
ASCE reference ET and dual crop coefficient method of DeJonge and 
Thorp (2017) combined with the Ritchie (1972) soil water evaporation 
method (GR, Table 2) performed statistically equivalent to or better 
than the other ET options for all but one agroecosystem metric, that is 
ETS (Table 7). The performance of ET methods using the Ritchie et al. 
(2009) soil water evaporation method was statistically poorer, parti
cularly for ETC, ETS, and soil water content metrics. Also, simulations 
based on Priestley and Taylor (1972) potential ET demonstrated poorer 
performance for many plant growth metrics (LAI, CHT, CDM, LDM, and 
SDM), transpiration-dominated ET (ETP), and soil water content at 
several depths. The combination of Priestley and Taylor (1972) po
tential ET with Ritchie et al. (2009) soil water evaporation, which is 
considered the default ET method in the model, performed most poorly 
with 14 of 23 agroecosystem metrics simulated statistically better by 
another method. While the Penman-Monteith combination equation 
with Ritchie (1972) soil water evaporation (FR, Table 2) performed 

relatively well, its performance lagged the GR method for several plant 
growth variables (SCY, LAI, and LDM). Taken together, the results 
suggested that the GR method offered holistic simulation improvements 
among multiple agroecosystem metrics, as compared to other ET op
tions in the DSSAT-CSM (Fig. 2). 

Considering the simulation results per lysimetry field, model per
formance generally declined with water-limited environmental condi
tions (Table 8). Seasonal evapotranspiration (ETC) was simulated sig
nificantly better for the fully-irrigated conditions of the SE lysimetry 
field, as compared to the limited-irrigation conditions of the NE lysi
metry field and the dryland conditions of the NW and SW lysimetry 
fields. Also, many of the plant growth metrics (LAI, CDM, SDM, BDM, 
and CWD) were simulated more poorly under dryland conditions with 
enhanced water stress. Future efforts should identify reasons for poorer 
model performance under water stress and develop improved ET 
methodologies to better simulate water-limited crop production. With 
expectations for a more water-limited future, models must be able to 
achieve accurate ET simulations under the full range of water man
agement scenarios, including fully-irrigated, deficit-irrigated, and dry
land crop production. 

Fig. 2. Number of agroecosystem metrics (out of 23 total metrics) for which each of six DSSAT-CSM evapotranspiration methods (RR, FR, GR, RS, FS, and GS) 
provided a best fit, as assessed through statistical inference. 
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4. Model evaluation 

With the Ritchie et al. (2009) soil water evaporation method (S,  
Table 2), poorer ET simulations during the evaporation-dominated si
mulation period (1 January to 31 May) were primarily due to over
estimation of soil water evaporation (Fig. 3b), whereas the Ritchie 
(1972) method tended to underestimate soil water evaporation 
(Fig. 3a). By design, the Ritchie (1972) method limited soil water 
evaporation to the water available in the top 5 cm of the soil profile, 
whereas the Ritchie et al. (2009) provided additional water supplies 
through simulations of upflux from deeper soil profile layers. Thus, the 
difference in algorithm design clearly drove the tendency for under
estimation or overestimation of soil water evaporation with these 
methods. In particular, the combination of DeJonge and Thorp (2017) 
potential ET with Ritchie et al. (2009) soil water evaporation (GS,  
Table 2) simulated ET most poorly during the evaporation-dominated 
period (Fig. 3b) with the largest %RMSE (23.5%). Likely, increased 
potential ET from the G method combined with enhanced water 

supplies for evaporation with the S approach led to greater over
estimation. On the other hand, combining DeJonge and Thorp (2017) 
potential ET with Ritchie (1972) soil water evaporation (GR, Table 2) 
provided ET simulations similar to other methods during this period 
(Fig. 3a). 

Inspection of the simulated data revealed trends leading to data 
groupings visible in Figs. 3a and 3b. Specifically, pre-season ET from all 
lysimeters in 2001 and from the NE and SE lysimeters in 2008 were in 
the group with largest ET amounts, while data from the NW and SW 
lysimeters in 2000 were in the group with smallest ET amounts. Thus, 
the groupings were a function of lysimeter and year. Simulated ET 
during the evaporation-dominated period ranged from 87–184 mm for 
the Ritchie (1972) method and 110–236 mm for the Ritchie et al. 
(2009) method, while lysimeter measurements ranged only between 
145–179 mm. Thus, both soil water evaporation methods simulated a 
much wider range of ET variability as compared with measurements. 
Although the Ritchie (1972) method led to improved model simulations 
overall (Table 6), both soil water evaporation approaches require 

Table 8 
Analysis of variance results (F statistics and p values) and Tukey’s multiple comparisons tests among the pruned Pareto optimal 
solutions from DSSAT-CSM CROPGRO-Cotton simulations for four lysimetry fields (NELYS, SELYS, NWLYS, and SWLYS) with differing 
irrigation management (full, limited, and dryland) using the GR evapotranspiration method. The group means for percent root mean 
squared errors (%RMSE) are given for each method and agroecosystem metric, and statistically better performing methods for each 
metric are highlighted in bold with gray background. 1   

1 anthesis date, ADAT; boll dry matter, BDM; canopy dry matter, CDM; canopy height, CHT; canopy width, CWD; emergence date, 
EDAT; evapotranspiration (1 Jan to harvest), ETC; evapotranspiration (1 Jun to 30 Sep), ETP; evapotranspiration (1 Jan to 31 May), 
ETS; leaf area index, LAI; leaf dry matter, LDM; seed cotton yield, SCY; stem dry matter, SDM; soil water content; SWC  
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improvements to better align simulations with measured data during 
evaporation-dominated periods. 

Regardless of the year, lysimeter, or ET methodology, the model 
tended to underestimate ET during the transpiration-dominated period 
from 1 June to 30 September (Figs. 3c and 3d). Notably, the DeJonge 
and Thorp (2017) potential ET approach (G, Table 2) often provided ET 
simulations nearer to the one-to-one line, as compared to ET simula
tions from the other two potential ET methods. The Priestley-Taylor ET 
method performed poorest for simulations of transpiration-dominated 
ET, while the Penman-Monteith combination equation performed more 
similarly to the DeJonge and Thorp (2017) method. However, the  
DeJonge and Thorp (2017) method provided slightly better simulations 
of transpiration-dominated ET with the smallest %RMSE, assessed via 
median simulation results among pruned Pareto optimal solutions 
(Figs. 3c and 3d). 

Generally, the DSSAT-CSM simulations of LAI were overestimated 

for measured LAI < 2.5 m2 m−2 (Figs. 4a and 4b). However, reasonable 
simulations were attained for LAI > 2.5 m2 m−2. Regardless of the soil 
water evaporation method used, the DeJonge and Thorp (2017) po
tential ET method provided LAI simulations with smaller %RMSE, as
sessed via the median simulation results among pruned Pareto optimal 
solutions. Accurate LAI simulation is important due its feedbacks on 
calculations with all three potential ET methods (Eqs. 1, 3, and 5). Si
mulation results for seed cotton yield (SCY) were reasonable with % 
RMSE ranging from 28.3% to 43.8% among the six ET methods (Figs. 4c 
and 4d), while the RR, GR, FS and GS methods all provided statistically 
equivalent SCY simulations (Table 7). 

Many simulation trends were similar to previous efforts using the 
same Bushland data set to evaluate the Cotton2K model (Thorp et al., 
2019), which by comparison is a much more complex and detailed 
cotton simulation model than DSSAT-CSM. For example, both Cotton2K 
and DSSAT-CSM tended to underestimate transpiration-dominated ET, 

Fig. 3. DSSAT-simulated versus measured evapotranspiration for the evaporation-dominated period (1 January through 31 May) with a) the RR, FR, and GR 
evapotranspiration simulation methods and b) the RS, FS, and GS methods and for the transpiration-dominated period (1 June through 30 September) with c) the RR, 
FR, and GR methods and d) the RS, FS, and GS methods. Simulated data are plotted as the median simulation result among parameterization options within pruned 
Pareto optimal sets. The percent root mean squared error (RMSE) for each case is provided. 
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regardless of the ET simulation methodology used. However, DSSAT- 
CSM simulated the evaporation-dominated ET much better than Cot
ton2K. Furthermore, Cotton2K simulated similar LAI trends with 
overestimated values for measured LAI < 2.5 m2 m−2; however, the LAI 
overestimation was worse with DSSAT-CSM. Simulations of SCY were 
similar among Cotton2K and DSSAT-CSM models, although DSSAT- 
CSM resulted in smaller %RMSE for SCY with some ET methods. 
Overall, the greater complexity of the Cotton2K model did not ne
cessarily demonstrate improved simulation performance for the Bush
land data set as compared with the simpler DSSAT-CSM model. 

5. Discussion 

Based on three years of cotton data from the Bushland, Texas site, 
the Ritchie (1972) soil water evaporation method (R, Table 2) out
performed the Ritchie et al. (2009) method (S, Table 2). This result 

agreed with the report by Kimball et al. (2019), who tested the same 
DSSAT-CSM ET methods using a maize data set from central Iowa. 
While the Ritchie et al. (2009) method underperformed in these studies, 
the overall design of the Ritchie et al. (2009) methodology is not poor. 
Rather, the developers need to reassess the calibration of the algorithm 
and evaluate the method using data sets that span multiple soil types. 
The Ritchie et al. (2009) method incorporates several hard-coded 
coefficients, and adjusting these coefficients was beyond the scope of 
the present study. Rather, the ET methods were evaluated and com
pared as presently designed and coded in the model. Future studies 
must reassess the Ritchie et al. (2009) code and associated coefficients 
using high-quality ET data sets, such as the Bushland lysimetry data 
used herein. With further detailed assessment and development, the  
Ritchie et al. (2009) soil water evaporation method may offer enhanced 
model performance. In the meantime, users should consider reverting 
to the Ritchie (1972) soil water evaporation method in DSSAT-CSM 

Fig. 4. DSSAT-simulated versus measured leaf area index (LAI) with a) the RR, FR, and GR evapotranspiration simulation methods and b) the RS, FS, and GS methods 
and seed cotton yield (SCY) with c) the RR, FR, and GR methods and d) the RS, FS, and GS methods. Simulated data are plotted as the median simulation result among 
parameterization options within pruned Pareto optimal sets. The percent root mean squared error (RMSE) for each case is provided. 
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until improvements to the Ritchie et al. (2009) method can be finalized. 
Regarding the three potential ET methods, the DeJonge and Thorp 

(2017) approach that incorporated ASCE Standardized Reference ET 
with an FAO-56 dual crop coefficient procedure (G, Table 2) out
performed a methodology based on the Penman-Monteith combination 
equation with a DSSAT-specific crop coefficient procedure (F, Table 2), 
which in turn outperformed the Priestley-Taylor method (R, Table 2). In 
the study of Kimball et al. (2019), the exact opposite result was re
ported, although they noted that their result was unexpected and that 
the differences among the potential ET approaches were generally small 
relative to differences due to soil water evaporation methods. The op
posite result of Kimball et al. (2019) may be related to the humid en
vironment at the Iowa field site and the limitations of the Iowa field 
data set to quantify soil water content profiles and water losses to ar
tificial subsurface drainage. Furthermore, the simulations results re
ported by Kimball et al. (2019) were not subjected to the computa
tionally-intensive methodology for guiding parameterization decisions 
and making unbiased intercomparisons of the ET method performance, 
as was done herein. As expected, the ET approach based on current 
standardized methods reported by ASCE (Walter et al., 2005) and in 
FAO-56 (Allen et al., 1998) led to many statistically significant im
provements of cotton growth and water balance simulations based on 
data from the Bushland, Texas weighing lysimetry fields. 

DeJonge et al. (2020) recently published a letter describing ten
dencies toward improper communication and specification of ET 
methods in agroecosystem models. The main point was to encourage 
proper use of standardized ET methods and highlight common confu
sion regarding differences between potential and reference ET methods. 
The DSSAT-CSM bases ET calculations on the concept of potential ET, 
likely because the model was originally conceived at a time prior to 
development of reference ET concepts. As such, the Priestley and Taylor 
(1972) methodology (R, Table 2) is appropriate for DSSAT-CSM, be
cause Priestley-Taylor is a potential ET method. However, the Penman- 
Monteith combination equation as currently implemented in DSSAT- 
CSM (F, Table 2) and the FAO Penman-Monteith equation (G, Table 2) 
are both reference ET methods. Therefore, their computations of re
ference ET require adjustment using appropriate FAO-56 crop coeffi
cients for non-stressed conditions to provide reasonable estimates of 
DSSAT-required potential ET. The original formulation of the Penman- 
Monteith combination equation in DSSAT-CSM (F, Table 2) has re
ceived past criticism (DeJonge and Thorp, 2017; DeJonge et al., 2020), 
mainly because the method is misnamed as the “FAO-56” method in 
DSSAT-related communications. However, this method implements 
neither 1) the FAO formulation of the Penman-Monteith equation nor 
2) proper adjustments of Penman-Monteith reference ET using FAO-56 
crop coefficients. As such, naming this DSSAT ET method after FAO-56 
is misleading to model users who are familiar with FAO-56 as described 
by Allen et al. (1998). The DeJonge and Thorp (2017) ET methodology 
(G, Table 2) was programmed to more closely follow the ET method 
described in FAO-56, but it is not the same as the methodology often 
described as the “FAO-56” method in the DSSAT-CSM interfaces and 
literature. Using high-quality ET data sets from the Bushland, Texas 
lysimetry field, the present study identified the DeJonge and Thorp 
(2017) ET methodology as a top-performing potential ET method for 
DSSAT-CSM, while its formulation is also more firmly rooted in current 
standardized ET methodologies as described by ASCE (Walter et al., 
2005) and FAO-56 (Allen et al., 1998). Future efforts will aim to make 
the DeJonge and Thorp (2017) methodology more readily available to 
model users and to provide further intercomparisons of DSSAT ET 
methods for additional crops and environmental conditions. 

6. Conclusions 

A computationally-intensive simulation methodology (Thorp et al., 
2019) was successfully applied to provide statistical comparisons of six 
ET methods in the DSSAT Cropping System Model. While the simulation 

methodology was complex, it enabled statistical comparisons of model 
performance that were free from subjective choices for model para
meterization. Results suggested that the DeJonge and Thorp (2017) 
method for potential ET combined with the Ritchie (1972) approach for 
soil water evaporation provided holistic simulation improvements 
among multiple agroecosystem metrics measured during three cotton 
growing seasons with fully-irrigated, deficit-irrigated, and dryland 
cultivation at Bushland, Texas, and this combination of ET approaches 
performed statistically better than the other five options. Because the  
DeJonge and Thorp (2017) method applies the standardized ET con
cepts described in the ASCE Standardized Reference ET Equation 
(Walter et al., 2005) and in FAO-56 (Allen et al., 1998) to compute 
DSSAT-required potential ET, the study demonstrated advantages for 
incorporation of standardized ET methods as an option to improve ET 
simulations in agroecosystem models. Future work should further 
evaluate the soil water evaporation methods in the model, with parti
cular focus on improvement of the Ritchie et al. (2009) method. 
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